Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Climate warming is causing widespread deglaciation and pioneer soil formation over glacial deposits. Melting glaciers expose rocky terrain and glacial till sediment that is relatively low in biomass, oligotrophic, and depleted in nutrients. Following initial colonization by microorganisms, glacial till sediments accumulate organic carbon and nutrients over time. However, the mechanisms driving soil nutrient stabilization during early pedogenesis after glacial retreat remain unclear. Here, we traced amino acid uptake by microorganisms in recently deglaciated high-Arctic soils and show that fungi play a critical role in the initial stabilization of the assimilated carbon. Pioneer basidiomycete yeasts were among the predominant taxa responsible for carbon assimilation, which were associated with overall high amino acid use efficiency and reduced respiration. In intermediate- and late-stage soils, lichenized ascomycete fungi were prevalent, but bacteria increasingly dominated amino acid assimilation, with substantially decreased fungal:bacterial amino acid assimilation ratios and increased respiration. Together, these findings demonstrate that fungi are important drivers of pedogenesis in high-Arctic ecosystems that are currently subject to widespread deglaciation from global warming.more » « less
-
Abstract Polar regions are relatively isolated from human activity and thus could offer insight into anthropogenic and ecological drivers of the spread of antibiotic resistance. Plasmids are of particular interest in this context given the central role that they are thought to play in the dissemination of antibiotic resistance genes (ARGs). However, plasmidomes are challenging to profile in environmental samples. The objective of this study was to compare various aspects of the plasmidome associated with glacial ice and adjacent aquatic environments across the high Arctic archipelago of Svalbard, representing a gradient of anthropogenic inputs and specific treated and untreated wastewater outflows to the sea. We accessed plasmidomes by applying enrichment cultures, plasmid isolation and shotgun Illumina sequencing of environmental samples. We examined the abundance and diversity of ARGs and other stress‐response genes that might be co/cross‐selected or co‐transported in these environments, including biocide resistance genes (BRGs), metal resistance genes (MRGs), virulence genes (VGs) and integrons. We found striking differences between glacial ice and aquatic environments in terms of the ARGs carried by plasmids. We found a strong correlation between MRGs and ARGs in plasmids in the wastewaters and fjords. Alternatively, in glacial ice, VGs and BRGs genes were dominant, suggesting that glacial ice may be a repository of pathogenic strains. Moreover, ARGs were not found within the cassettes of integrons carried by the plasmids, which is suggestive of unique adaptive features of the microbial communities to their extreme environment. This study provides insight into the role of plasmids in facilitating bacterial adaptation to Arctic ecosystems as well as in shaping corresponding resistomes. Increasing human activity, warming of Arctic regions and associated increases in the meltwater run‐off from glaciers could contribute to the release and spread of plasmid‐related genes from Svalbard to the broader pool of ARGs in the Arctic Ocean.more » « less
-
Subsurface environments are among Earth’s largest habitats for microbial life. Yet, until recently, we lacked adequate data to accurately differentiate between globally distributed marine and terrestrial surface and subsurface microbiomes. Here, we analyzed 478 archaeal and 964 bacterial metabarcoding datasets and 147 metagenomes from diverse and widely distributed environments. Microbial diversity is similar in marine and terrestrial microbiomes at local to global scales. However, community composition greatly differs between sea and land, corroborating a phylogenetic divide that mirrors patterns in plant and animal diversity. In contrast, community composition overlaps between surface to subsurface environments supporting a diversity continuum rather than a discrete subsurface biosphere. Differences in microbial life thus seem greater between land and sea than between surface and subsurface. Diversity of terrestrial microbiomes decreases with depth, while marine subsurface diversity and phylogenetic distance to cultured isolates rivals or exceeds that of surface environments. We identify distinct microbial community compositions but similar microbial diversity for Earth’s subsurface and surface environments.more » « lessFree, publicly-accessible full text available December 20, 2025
-
Mauro Guglielmin (Ed.)ABSTRACT Accelerated climate warming is causing significant reductions in the volume of Arctic glaciers, such that previously ice‐capped bare ground is uncovered, harboring soil development. Monitoring the thermal and hydrologic characteristics of soils, which strongly affect microbial activity, is important to understand the evolution of emerging terrestrial landscapes. We instrumented two sites on the forefield of a retreating Svalbard glacier, representing sediment ages of approximately 5 and 60 years since exposure. Our instrumentation included an ERT array complemented by adjacent point sensor measurements of subsurface temperature and water content. Sediments were sampled at each location and at two more additional sites (120 and 2000 years old) along a chronosequence aligned with the direction of glacial retreat. Analysis suggests older sediments have a lower bulk density and contain fewer large minerals, which we interpret to be indicative of sediment reworking over time. Two months of monitoring data recorded during summer 2021 indicate that the 60‐year‐old sediments are stratified showing more spatially consistent changes in electrical resistivity, whereas the younger sediments show a more irregular structure, with consequences on heat and moisture conductibility. Furthermore, our sensors reveal that young sediments have a higher moisture content, but a lower moisture content variability.more » « less
-
ABSTRACT Permafrost microbial research has flourished in the past decades, due in part to improvements in sampling and molecular techniques, but also the increased focus on the permafrost greenhouse gas feedback to climate change and other ecological processes in high latitude and alpine permafrost soils. Permafrost microorganisms are adapted to these extreme environments and remain active at low temperatures and when resources are limited. They are also an important component of global elemental cycles as they regulate organic matter turnover and greenhouse gas production, particularly as permafrost thaws. Here we review the permafrost microbiology literature coupled with an exploration of its historical aspects, with a particular focus on a new understanding advanced by molecular biology techniques. We further identify knowledge gaps and ways forward to improve our understanding of microbial contributions to ecosystem biogeochemistry of permafrost‐affected systems.more » « lessFree, publicly-accessible full text available January 13, 2026
-
Physical, chemical, and biological processes create and maintain the critical zone (CZ). In weathered and crystalline rocks, these processes occur over 10–100 s of meters and transform bedrock into soil. The CZ provides pore space and flow paths for groundwater, supplies nutrients for ecosystems, and provides the foundation for life. Vegetation in the aboveground CZ depends on these components and actively mediates Earth system processes like evapotranspiration, nutrient and water cycling, and hill slope erosion. Therefore, the vertical and lateral extent of the CZ can provide insight into the important chemical and physical processes that link life on the surface with geology 10–100 s meters below. In this study, we present 3.9 km of seismic refraction data in a weathered and crystalline granite in the Laramie Range, Wyoming. The refraction data were collected to investigate two ridges with clear contrasts in vegetation and slope. Given the large contrasts in slope, aspect, and vegetation cover, we expected large differences in CZ structure. However, our results suggest no significant differences in large-scale (>10 s of m) CZ structure as a function of slope or aspect. Our data appears to suggest a relationship between LiDAR-derived canopy height and depth to fractured bedrock where the tallest trees are located over regions with the shallowest depth to fractured bedrock. After separating our data by the presence or lack of vegetation, higher P-wave velocities under vegetation is likely a result of higher saturation.more » « less
-
### Overview This data release includes surface nuclear magnetic resonance (sNMR) data collected as part of the SUN-SPEARS project. The project is funded by the National Science Foundation (Award number 2015329) and is concerned with studying soil evolution in high Arctic environments post glacial retreat. Within SUN-SPEARS, data are collected on a chronosequence from very recently deglaciated to older locations which have been exposed for decades to centuries. In this data release, sNMR data from two sites are included: site 1 which was collected approximately 15 meters (m) from the snout of the glacier, and site 2 which was located approximately 1000 m from the snout of the glacier, Global Positioning System (GPS) coordinates are included for more precise locations. ### Access Data files can be accessed via: [https://arcticdata.io/data/10.18739/A23X83N25](https://arcticdata.io/data/10.18739/A23X83N25)more » « less
-
Abstract We report the results of an unsupervised decomposition of the local stellar halo in the chemodynamical space spanned by the abundance measurements from APOGEE DR17 and GALAH DR3. In our Gaussian mixture model, only four independent components dominate the halo in the solar neighborhood, three previously known, Aurora, Splash, and Gaia-Sausage/Enceladus (GS/E), and one new, Eos. Only one of these four is of accreted origin, namely, the GS/E, thus supporting the earlier claims that the GS/E is the main progenitor of the Galactic stellar halo. We show that Aurora is entirely consistent with the chemical properties of the so-called Heracles merger. In our analysis in which no predefined chemical selection cuts are applied, Aurora spans a wide range of [Al/Fe] with a metallicity correlation indicative of a fast chemical enrichment in a massive galaxy, the young Milky Way. The new halo component dubbed Eos is classified as in situ given its high mean [Al/Fe]. Eos shows strong evolution as a function of [Fe/H], where it changes from being the closest to GS/E at its lowest [Fe/H] to being indistinguishable from the Galactic low-αpopulation at its highest [Fe/H]. We surmise that at least some of the outer thin disk of the Galaxy started its evolution in the gas polluted by the GS/E, and Eos is evidence of this process.more » « less
An official website of the United States government
